Farmers’ perceptions of constraints to sorghum production, and *Striga* control practices, in semi-arid areas of Tanzania

E. Mremaa,b, H. Shimelisa, M.D. Lainga, and T. Bucheyekc

a African Center for Crop Improvement, UKZN, South Africa
b Tumbi Agricultural Research Institute, Tabora, Tanzania
c Ilonga Agricultural Research Institute, Kilosa, Morogoro, Tanzania
Introduction

• Sorghum is widely grown in arid and semi-arid parts of sub-Saharan Africa (SSA).

• In SSA sorghum productivity is low: biotic and abiotic stresses, and socio-economic constraints.
Introduction

• Both *Striga hermonthica* (Del.) Benth and *S. asiatica* (L.) Kuntze] occur in Tanzania, and cause yield losses of 30 -90% in sorghum, and other cereals

• Cultural, chemical and host resistance measures have not been adopted in Tanzania, and *Striga* infested fields are simply abandoned

S. asiatica
S. hermonthica
Parts of Africa affected by *Striga*

Sorghum fields infested by *Striga*
• Understanding farmers’ production constraints and perceptions of *Striga* management is essential for demand-led sorghum breeding

Research Objective
To assess constraints affecting sorghum production and farmers’ approaches of *Striga* management in the semi-arid regions of Tanzania, as a basis for breeding for *Striga* resistance
Materials and methods

Description of study sites and sampling

• Three districts (Igunga, Kishapu and Meatu), all situated in the semi-arid areas of western Tanzania

• Six wards: Mbutu and Isakamaliwa (from Igunga District), Mwataga and Kishapu (from Kishapu District), Mamshali and Mwagwila (from Meatu District)

• Six villages were selected each with 20 farmers

• A total of 120 farmers participated in individual interviews
Striga distribution map within the boundaries of Tanzania (MacOpiyo et al. 2009), and location of the three study districts, indicated by a thick, black line
Focus group discussions (FGDs)

• FGDs were held in each village
• Each focus group composed of eight representative farmers, local leaders, and key informants
• A total of 48 farmers participated in the FGDs across the three districts
Materials and Methods

• Data sources

Face-to-face interviews, observations made through transect walks across selected villages, and discussions with focus groups.
Materials and Methods

• Data source and data analysis

Semi-structured questionnaire: farmers’ preferences, perceived production constraints, levels of *Striga* infestation and control practices

Farmers` preferred traits in sorghum varieties were described and ranked using a pair-wise matrix technique

Data analyzed using the Statistical Package for Social Scientists (SPSS) computer software
Results

Crop production

The majority of the farmers allocated most of their land to sorghum, followed by cotton, and maize.

Different crops grown in 2013/2014 cropping season
Results

Perceived constraints to sorghum production:
Drought, low soil fertility, *Striga* infestation, storage pests, damage by birds, lack of improved varieties, lack of production inputs and diseases

75% to 85% of the respondents ranked *Striga* infestation as a highly important constraint

The two *Striga* species were identified as the most abundant parasitic weeds
Major constraints to sorghum production

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Severity</th>
<th>District</th>
<th>Mean</th>
<th>Df</th>
<th>Chi-Square</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Igunga</td>
<td>Kishapu</td>
<td>Meatu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drought</td>
<td>HS</td>
<td>75.0</td>
<td>75.0</td>
<td>70.0</td>
<td>73.6</td>
<td>0.673</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>15.0</td>
<td>15.0</td>
<td>25.0</td>
<td>18.3</td>
<td>0.673</td>
</tr>
<tr>
<td></td>
<td>LS</td>
<td>10.0</td>
<td>10.0</td>
<td>5.0</td>
<td>8.6</td>
<td>0.673</td>
</tr>
<tr>
<td>Storage pests</td>
<td>HS</td>
<td>15.0</td>
<td>20.0</td>
<td>30.0</td>
<td>21.7</td>
<td>0.265</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>85.0</td>
<td>75.0</td>
<td>65.0</td>
<td>76.0</td>
<td>0.265</td>
</tr>
<tr>
<td></td>
<td>LS</td>
<td>0.0</td>
<td>5.0</td>
<td>5.0</td>
<td>3.3</td>
<td>0.265</td>
</tr>
<tr>
<td>Striga</td>
<td>HS</td>
<td>85.0</td>
<td>85.0</td>
<td>75.0</td>
<td>81.7</td>
<td>0.410</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>15.0</td>
<td>15.0</td>
<td>25.0</td>
<td>18.3</td>
<td>0.410</td>
</tr>
<tr>
<td>Birds</td>
<td>HS</td>
<td>10.0</td>
<td>20.0</td>
<td>20.0</td>
<td>17.0</td>
<td>0.747</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>85.0</td>
<td>75.0</td>
<td>75.0</td>
<td>78.0</td>
<td>0.747</td>
</tr>
<tr>
<td></td>
<td>LS</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>0.747</td>
</tr>
<tr>
<td>Lack of improved varieties</td>
<td>HS</td>
<td>20.0</td>
<td>0.0</td>
<td>10.0</td>
<td>10.0</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>25.0</td>
<td>15.0</td>
<td>20.0</td>
<td>20.0</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>LS</td>
<td>65.0</td>
<td>85.0</td>
<td>70.0</td>
<td>81.7</td>
<td>0.021</td>
</tr>
<tr>
<td>Poor soil fertility</td>
<td>HS</td>
<td>10.0</td>
<td>0.0</td>
<td>5.0</td>
<td>5.0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>20.0</td>
<td>5.0</td>
<td>15.0</td>
<td>13.3</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>LS</td>
<td>70.0</td>
<td>95.0</td>
<td>80.0</td>
<td>81.7</td>
<td>0.000</td>
</tr>
<tr>
<td>Lack of production inputs</td>
<td>HS</td>
<td>5.0</td>
<td>0.0</td>
<td>15.0</td>
<td>7.0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>25.0</td>
<td>90.0</td>
<td>65.0</td>
<td>60.0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>LS</td>
<td>70.0</td>
<td>10.0</td>
<td>20.0</td>
<td>33.0</td>
<td>0.000</td>
</tr>
<tr>
<td>Diseases</td>
<td>HS</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>1.7</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>95.0</td>
<td>0.0</td>
<td>80.0</td>
<td>58.3</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>LS</td>
<td>5.0</td>
<td>100.0</td>
<td>15.0</td>
<td>40.0</td>
<td>0.000</td>
</tr>
</tbody>
</table>

HS = high severity, MS = moderate severity and LS = low severity, Df = degrees of freedom
Striga infestation and control strategies:

- Hand weeding, crop rotation, fallowing, intercropping, and organic manure application were some of the farmer recognized control measures, BUT they were hard to apply consistently.

- Most interviewed farmers (80%) had little knowledge of the internationally recommended Striga management practices.
 - No knowledge on these technologies
 - No extension service providing detailed information about these control options

- Adoption of Striga resistant varieties has been slow:
 - The absence of farmers` preferred traits
 - No organized seed system to deliver the new varieties
 - Loss of Striga resistance: Macia, Serena, Wahi, Pato, and Tegemeo

There is a need to develop and distribute locally adapted sorghum varieties with resistance to Striga AND farmer preferred traits.
Farmers’ ranking of the traits of preference in sorghum varieties

- In all districts, resistance to *Striga* was rated as the No. 1 trait of preference.

- Farmers preferred sorghum varieties that were:
 - early maturing - to escape drought
 - tolerant to *Striga* infestations
 - bird repellent

- Differences existed in the ranks between the districts.
Farmers’ traits of preference (%) for sorghum varieties

<table>
<thead>
<tr>
<th>Traits</th>
<th>District</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Igunga</td>
<td>Kishapu</td>
</tr>
<tr>
<td>Striga resistance</td>
<td>45.0</td>
<td>42.5</td>
</tr>
<tr>
<td>Earliness</td>
<td>17.5</td>
<td>15.0</td>
</tr>
<tr>
<td>Drought tolerance</td>
<td>12.5</td>
<td>17.5</td>
</tr>
<tr>
<td>Resistance to bird attack</td>
<td>11.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Pest and disease resistance</td>
<td>4.5</td>
<td>10.0</td>
</tr>
<tr>
<td>Grain yield</td>
<td>6.0</td>
<td>7.5</td>
</tr>
<tr>
<td>Grain quality</td>
<td>3.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Conclusions

- **Sorghum** was the most valuable cereal crop in the semi-arid regions of Tanzania.

- **Striga infestation** was the major biotic constraint limiting sorghum production.

- **Factors limiting Striga management**: herbicides (unavailability and unaffordability), delayed hand weeding, lack of *Striga* resistant and farmers` preferred varieties.

- **Sorghum breeding program required**: develop sorghum varieties for *Striga* resistance that include farmer preferred traits in locally adapted varieties.
Breeding for farmers-preferred, *Striga* resistant and FOS compatible sorghum genotypes

1. *Sorghum bicolor*

Superior Sorghum Lines:
- *Striga* Resistance:
 - low stimulants
 - reduced metabolites
 - mechanical
- Compatibility with FOS suppress *Striga*

Germination stimulants: strigolactones

Tritrophic Interaction

2. *Striga hermonthica* or *S. asiatica*

BioControl of *Striga*
- Direct – FOS attacks germinating plants
- Indirect – FOS degrades strigolactones

3. *Fusarium oxysporum* f.sp. *strigae*
Dr Mrema with candidate sorghum varieties developed for *Striga* resistance and compatibility with FOS biocontrol, at Tumbi Agricultural Research Institute, Tabora Region, Tanzania
Conclusions

- Sorghum was the most valuable cereal crop in the semi-arid regions of Tanzania

- Striga infestation was the major biotic constraint limiting sorghum production

- Factors limiting Striga management: herbicides (unavailability and unaffordability), delayed hand weeding, lack of Striga resistant and farmers` preferred varieties

- Sorghum breeding program required: develop sorghum varieties for Striga resistance that include farmer preferred traits in locally adapted varieties