Comparison of Waxy and Non-Waxy Sorghum (*Sorghum bicolor*) with High Protein Digestibility Traits and Teff (*Eragrostis tef*) in Ethiopian *Injera* Making Performance

By: Kebede Abegaz (PhD)
Nutrition, Food Science & Technology
Hawassa University, Ethiopia

Global Conference 2018: *Sorghum in the 21st Century*

Cape Town, South Africa
9-12 April 2018
Outline

1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusion
1. Introduction

Injera is pancake-like thin-flat bread from fermented *batter* of *cereals*
✓ Staple food for majority of Ethiopians

✓ **Teff** is the best cereal for high quality *injera* to commercial & home uses

✓ **Sorghum** is *inferior* in *injera* making performance
 ➢ Staling & fragile texture during storage
 ◑ high amylose sorghum dry & become hard upon cooling

➢ Sorghum *injera* pushed to non-commercial use unlike **teff**
Injera:

- Upper side/“face” *(Ayin)*
- Underside/bottom *(Sebket)*
1. Introduction ... cont’d

Factors affecting the quality of sorghum injera

- Starch content & digestibility,
- Amount of amylose,
- Amylopectin starch lowers gelatinization temperatures
- Amount & types of phenolic compounds in sorghum
- Blending ratio with teff
1. Introduction … cont’d

✓ **Teff** is expensive than **sorghum** more than **twofold**
 - Teff attracted export market,
 - but the GO banned teff export to avoid domestic shortage

✓ **Sorghum** is good candidate for teff export substitution
 - Improving sorghum varieties & injera making performance are the strategies
 - Call for teaming up breeding and food technology researches
 - Are waxy & high **protein digestibility** (HPD) sorghum traits contribute to improved quality injera production?
1. Introduction … cont’d

- Relatively low nutritive value of sorghum is resistance of its seed storage proteins (kafirins) to protease digestion
 - enzyme resistant structure on the periphery of protein body
 - extended structures reduces digestion of protein & starch
 - Is processing technology improve quality of injera?
1. Introduction … cont’d

The overall **objective** is to:

- ✔ evaluate performance of Waxy & HPD sorghum lines for *injera* making
 - develop *injera* from waxy & HPD sorghum blended with teff

- investigate effect of fermentation & *injera* baking on tannin/phytate
- Determine partial substitution rate of teff with waxy and HPD sorghum traits for **commercial injera** production

- Describe the starch pasting and protein digestibility properties
- Assess the organoleptic acceptability of *injera* from sorghum lines with waxy and HPD traits
2. Materials and Methods

Proportion of sorghum with waxy & HPD traits to “Kuncho” teff flour

<table>
<thead>
<tr>
<th>Proportion of WLD, WHD, WLDh or NWLD with to teff flour</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLD:Teff</td>
<td>WHD:Teff</td>
</tr>
<tr>
<td>100:0</td>
<td>100:0</td>
</tr>
<tr>
<td>80:20</td>
<td>80:20</td>
</tr>
<tr>
<td>50:50</td>
<td>50:50</td>
</tr>
<tr>
<td>0:100</td>
<td>0:100</td>
</tr>
</tbody>
</table>
2. Materials and Methods ... cont’d

Phyto-chemical analysis - Phytic acids and tannins

Sensory evaluation – consumer-oriented sensory panel (9-point hedonic scale)

Starch pasting
 - Peak viscosity (degree of starch swelling during cooking)
 - Final viscosity (starch gel network integrity after cooling)

The Folin-ciocaltau reagent technique - Foling number (total phenol content)

Protein Digestibility - *in vitro* pepsin assay
 - Less reliable method compared to *in vivo*
2. Materials and Methods ... cont’d

Proximate composition – moisture, crude protein, fiber, fat, asdh, carbohydrate, energy conversion

Minerals - Fe, Zn and Ca

Microbiological and biochemical changes occurring during fermentation – bacteria, yeasts, pH, titratable acidity

The above were part of the research methods, but not shown here
3. Results and Discussions

3.1 Sensory/organoleptic acceptability of injera

- Sorghum with waxy & HPD traits showed good performance in injera production
- Waxy and HPD fermented faster (22 h) than normal sorghum
- Keeps injera quality for 3 days like that of teff

- Substation of teff up to 50% sorghum is applicable for commercial injera production
 - High economic benefits as export substitution and alternative resource utilization
Fresh baked injera
Injera stored in a pile
After 3 days storage at ambient temperature
Bread from 80% waxy & HPD sorghum substituted wheat flour
<table>
<thead>
<tr>
<th>Sample</th>
<th>Color</th>
<th>Rollability</th>
<th>Scuping</th>
<th>Non-sticking</th>
<th>Sourness</th>
<th>Aroma</th>
<th>Taste</th>
<th>Even eyes</th>
<th>Bottom</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>KT 100:0</td>
<td>8.15±1.02<sup>a</sup></td>
<td>8.17±0.90<sup>a</sup></td>
<td>7.90±1.09<sup>a</sup></td>
<td>7.67±1.09<sup>a</sup></td>
<td>7.45±1.06<sup>a</sup></td>
<td>7.82±0.84<sup>a</sup></td>
<td>7.72±0.84<sup>a</sup></td>
<td>8.00±1.01<sup>a</sup></td>
<td>8.07±0.82<sup>a</sup></td>
<td>8.12±0.72<sup>a</sup></td>
</tr>
<tr>
<td>NWLD 50:50</td>
<td>6.82±1.03<sup>b</sup></td>
<td>7.15±1.09<sup>b</sup></td>
<td>7.32±0.97<sup>b</sup></td>
<td>7.47±1.10<sup>ab</sup></td>
<td>7.22±1.36<sup>c</sup></td>
<td>7.72±0.99<sup>c</sup></td>
<td>7.20±0.93<sup>b</sup></td>
<td>7.12±1.01<sup>b</sup></td>
<td>7.42±0.90<sup>b</sup></td>
<td>7.52±0.87<sup>b</sup></td>
</tr>
<tr>
<td>NWLD 80:20</td>
<td>6.70±1.22<sup>bc</sup></td>
<td>7.17±1.05<sup>b</sup></td>
<td>7.15±1.09<sup>bc</sup></td>
<td>7.07±1.18<sup>c</sup></td>
<td>6.97±1.22<sup>a</sup></td>
<td>6.85±1.05<sup>bc</sup></td>
<td>6.95±1.05<sup>bc</sup></td>
<td>7.22±0.99<sup>b</sup></td>
<td>7.25±1.14<sup>b</sup></td>
<td>7.17±0.87<sup>bc</sup></td>
</tr>
<tr>
<td>NWLD 100:0</td>
<td>6.27±1.21<sup>c</sup></td>
<td>6.65±1.33<sup>c</sup></td>
<td>6.80±1.24<sup>c</sup></td>
<td>6.22±1.22<sup>c</sup></td>
<td>6.47±1.33<sup>c</sup></td>
<td>6.67±1.20<sup>c</sup></td>
<td>6.57±1.15<sup>c</sup></td>
<td>6.55±1.10<sup>c</sup></td>
<td>6.70±1.20<sup>c</sup></td>
<td>6.92±1.11<sup>c</sup></td>
</tr>
<tr>
<td>KT 100:0</td>
<td>8.32±0.85<sup>a</sup></td>
<td>8.20±0.75<sup>a</sup></td>
<td>7.97±0.94<sup>a</sup></td>
<td>7.95±0.74<sup>a</sup></td>
<td>8.02±0.91<sup>a</sup></td>
<td>8.07±0.88<sup>a</sup></td>
<td>8.15±0.76<sup>a</sup></td>
<td>8.20±0.91<sup>a</sup></td>
<td>8.30±0.72<sup>a</sup></td>
<td>8.60±0.59<sup>a</sup></td>
</tr>
<tr>
<td>WHD1 50:50</td>
<td>7.00±0.96<sup>b</sup></td>
<td>7.15±1.05<sup>b</sup></td>
<td>7.22±0.94<sup>b</sup></td>
<td>7.15±1.00<sup>b</sup></td>
<td>7.32±0.97<sup>b</sup></td>
<td>7.57±0.84<sup>b</sup></td>
<td>7.35±0.97<sup>b</sup></td>
<td>7.50±0.71<sup>b</sup></td>
<td>7.62±1.00<sup>b</sup></td>
<td>7.97±0.89<sup>b</sup></td>
</tr>
<tr>
<td>WHD1 80:20</td>
<td>6.27±0.93<sup>c</sup></td>
<td>6.52±1.01<sup>c</sup></td>
<td>6.62±1.03<sup>c</sup></td>
<td>6.35±0.86<sup>c</sup></td>
<td>6.17±0.98<sup>c</sup></td>
<td>6.47±1.08<sup>c</sup></td>
<td>6.77±0.89<sup>c</sup></td>
<td>6.60±1.19<sup>c</sup></td>
<td>6.30±1.24<sup>c</sup></td>
<td>6.95±0.90<sup>c</sup></td>
</tr>
<tr>
<td>WHD1 100:0</td>
<td>5.52±1.15<sup>d</sup></td>
<td>5.75±1.25<sup>d</sup></td>
<td>6.02±1.51<sup>d</sup></td>
<td>5.70±1.15<sup>c</sup></td>
<td>5.75±0.86<sup>d</sup></td>
<td>6.22±1.12<sup>c</sup></td>
<td>5.92±1.26<sup>d</sup></td>
<td>5.77±1.44<sup>d</sup></td>
<td>6.00±1.26<sup>c</sup></td>
<td>6.07±1.28<sup>d</sup></td>
</tr>
<tr>
<td>KT 100:0</td>
<td>8.50±0.81<sup>a</sup></td>
<td>8.17±0.81<sup>a</sup></td>
<td>8.12±0.93<sup>a</sup></td>
<td>8.05±1.23<sup>a</sup></td>
<td>8.07±0.99<sup>a</sup></td>
<td>8.10±0.81<sup>a</sup></td>
<td>8.17±0.78<sup>a</sup></td>
<td>8.20±0.82<sup>a</sup></td>
<td>8.37±0.74<sup>a</sup></td>
<td>8.62±0.54<sup>a</sup></td>
</tr>
<tr>
<td>WHD2 50:50</td>
<td>7.57±1.19<sup>b</sup></td>
<td>7.80±0.91<sup>ab</sup></td>
<td>7.87±0.96<sup>a</sup></td>
<td>7.27±1.35<sup>b</sup></td>
<td>7.65±1.09<sup>a</sup></td>
<td>7.80±1.04<sup>a</sup></td>
<td>7.95±0.84<sup>a</sup></td>
<td>8.02±0.91<sup>a</sup></td>
<td>8.17±0.98<sup>a</sup></td>
<td>8.32±0.79<sup>a</sup></td>
</tr>
<tr>
<td>WHD2 80:20</td>
<td>7.17±1.21<sup>b</sup></td>
<td>7.42±1.19<sup>b</sup></td>
<td>7.40±1.08<sup>b</sup></td>
<td>6.87±1.11<sup>b</sup></td>
<td>7.05±1.13<sup>b</sup></td>
<td>7.15±1.38<sup>b</sup></td>
<td>7.25±1.19<sup>b</sup></td>
<td>7.40±1.21<sup>b</sup></td>
<td>7.67±1.22<sup>c</sup></td>
<td>7.67±1.02<sup>b</sup></td>
</tr>
<tr>
<td>WHD2 100:0</td>
<td>6.42±1.15<sup>c</sup></td>
<td>6.50±1.21<sup>c</sup></td>
<td>6.57±1.27<sup>c</sup></td>
<td>6.22±1.22<sup>c</sup></td>
<td>6.57±0.87<sup>c</sup></td>
<td>6.50±1.35<sup>c</sup></td>
<td>6.70±1.11<sup>c</sup></td>
<td>6.80±1.20<sup>c</sup></td>
<td>6.75±1.14<sup>c</sup></td>
<td>7.02±0.97<sup>c</sup></td>
</tr>
<tr>
<td>KT 100:0</td>
<td>8.12±0.88<sup>a</sup></td>
<td>8.17±0.71<sup>a</sup></td>
<td>7.87±0.96<sup>a</sup></td>
<td>7.90±0.92<sup>a</sup></td>
<td>7.70±0.88<sup>a</sup></td>
<td>7.72±0.84<sup>a</sup></td>
<td>7.72±0.90<sup>a</sup></td>
<td>7.85±1.07<sup>a</sup></td>
<td>8.05±0.81<sup>a</sup></td>
<td>8.32±0.79<sup>a</sup></td>
</tr>
<tr>
<td>WLD 50:50</td>
<td>7.17±1.00<sup>b</sup></td>
<td>7.30±0.99<sup>b</sup></td>
<td>7.47±1.06<sup>ab</sup></td>
<td>7.40±1.10<sup>b</sup></td>
<td>7.25±1.00<sup>b</sup></td>
<td>7.12±0.72<sup>b</sup></td>
<td>7.27±0.64<sup>b</sup></td>
<td>7.22±1.04<sup>b</sup></td>
<td>7.47±0.84<sup>b</sup></td>
<td>7.62±0.95<sup>b</sup></td>
</tr>
<tr>
<td>WLD 80:20</td>
<td>6.77±1.31<sup>b</sup></td>
<td>7.05±1.01<sup>b</sup></td>
<td>7.02±1.16<sup>b</sup></td>
<td>7.05±1.13<sup>b</sup></td>
<td>6.67±1.07<sup>b</sup></td>
<td>7.00±1.03<sup>b</sup></td>
<td>6.62±0.95<sup>c</sup></td>
<td>6.92±1.07<sup>b</sup></td>
<td>7.05±0.95<sup>b</sup></td>
<td>7.25±1.10<sup>b</sup></td>
</tr>
<tr>
<td>WLD 100:0</td>
<td>6.02±1.76<sup>c</sup></td>
<td>6.40±1.54<sup>c</sup></td>
<td>6.45±1.48<sup>c</sup></td>
<td>6.47±1.55<sup>c</sup></td>
<td>6.12±1.22<sup>c</sup></td>
<td>6.07±1.30<sup>c</sup></td>
<td>6.37±1.12<sup>c</sup></td>
<td>6.80±1.41<sup>c</sup></td>
<td>6.40±1.27<sup>c</sup></td>
<td>6.55±1.41<sup>c</sup></td>
</tr>
</tbody>
</table>
3.2 … Tannin & phytate

Tannin & phytate reduced during injera dough/batter fermentation
✓ Teff has lower amount of tannin & phytate than sorghum
✓ Sorghum lines with waxy & HPD traits showed high reduction
 ➢ 184 mg/100 g in flour to 23 mg in injera

✓ bioavailability of minerals/protein
<table>
<thead>
<tr>
<th>Sorghum to Teff Proportion</th>
<th>Flour</th>
<th>Dough</th>
<th>Batter</th>
<th>Injera</th>
</tr>
</thead>
<tbody>
<tr>
<td>KT 0: 100</td>
<td>37.45±1.59<sup>d</sup></td>
<td>33.88±0.56<sup>d</sup></td>
<td>32.45±2.65<sup>d</sup></td>
<td>30.79±1.06<sup>d</sup></td>
</tr>
<tr>
<td>WHD 100:0</td>
<td>184.19±5.84<sup>a</sup></td>
<td>98.44±16.75<sup>b</sup></td>
<td>69.94±3.02<sup>b</sup></td>
<td>22.84±2.45<sup>d</sup></td>
</tr>
<tr>
<td>WHDh 100:0</td>
<td>188.50±2.47<sup>a</sup></td>
<td>121.32±1.49<sup>d</sup></td>
<td>115.01±1.49<sup>de</sup></td>
<td>87.62±1.24<sup>f</sup></td>
</tr>
<tr>
<td>WLD 100:0</td>
<td>204.63±1.22<sup>a</sup></td>
<td>82.46±2.97<sup>c</sup></td>
<td>73.09±1.49<sup>d</sup></td>
<td>67.70±2.44<sup>d</sup></td>
</tr>
<tr>
<td>NWLD 100: 0</td>
<td>155.59±1.74<sup>a</sup></td>
<td>113.72±1.51<sup>b</sup></td>
<td>nd</td>
<td>25.71±2.94<sup>f</sup></td>
</tr>
<tr>
<td>WHD 50:50</td>
<td>180.38±1.24<sup>a</sup></td>
<td>119.33±0.00<sup>b</sup></td>
<td>104.72±4.47<sup>b</sup></td>
<td>30.77±2.47<sup>d</sup></td>
</tr>
<tr>
<td>WHDh 50:50</td>
<td>162.98±3.71<sup>b</sup></td>
<td>133.13±2.61<sup>c</sup></td>
<td>117.32±1.49<sup>de</sup></td>
<td>109.53±4.9<sup>e</sup></td>
</tr>
<tr>
<td>WLD 50:50</td>
<td>111.45±1.23<sup>b</sup></td>
<td>71.54±5.92<sup>d</sup></td>
<td>41.50±1.63<sup>e</sup></td>
<td>29.89±3.71<sup>f</sup></td>
</tr>
<tr>
<td>NWLD 50:50</td>
<td>115.99±4.93<sup>b</sup></td>
<td>72.12±0.00<sup>c</sup></td>
<td>nd</td>
<td>58.56±2.46<sup>d</sup></td>
</tr>
<tr>
<td>KT 0:100</td>
<td>37.45±1.59<sup>e</sup></td>
<td>32.45±2.65<sup>ef</sup></td>
<td>nd</td>
<td>29.69±3.36<sup>ef</sup></td>
</tr>
</tbody>
</table>
Table 2b Reduction of phytate during fermentation and baking of sorghum injera

<table>
<thead>
<tr>
<th>Sorghum to Teff Proportion</th>
<th>Phytate mg/100g</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flour</td>
<td>Dough</td>
<td>Batter</td>
</tr>
<tr>
<td>KT 0: 100</td>
<td>168.61±0.00d</td>
<td>141.44±5.56f</td>
<td>140.01±3.36f</td>
</tr>
<tr>
<td>WHD 100:0</td>
<td>251.96±0.00a</td>
<td>178.90±1.60c</td>
<td>167.28±2.16de</td>
</tr>
<tr>
<td>WHh 100:0</td>
<td>268.18±0.56a</td>
<td>197.70±10.41b</td>
<td>156.23±2.93cd</td>
</tr>
<tr>
<td>WLD 100:0</td>
<td>194.12±0.56a</td>
<td>129.39±0.54d</td>
<td>126.01±3.28d</td>
</tr>
<tr>
<td>NWLD 100: 0</td>
<td>265.37±0.00a</td>
<td>189.96±2.62c</td>
<td>nd</td>
</tr>
<tr>
<td>WHD 50:50</td>
<td>205.54±1.11b</td>
<td>144.06±1.06f</td>
<td>140.20±4.33f</td>
</tr>
<tr>
<td>WHDh 50:50</td>
<td>207.62±8.64b</td>
<td>157.18±2.19cd</td>
<td>148.66±0.55d</td>
</tr>
<tr>
<td>WLD 50:50</td>
<td>191.74±2.81c</td>
<td>160.74±0.55b</td>
<td>145.83±2.10c</td>
</tr>
<tr>
<td>NWLD 50:50</td>
<td>219.11±5.98b</td>
<td>165.61±3.22de</td>
<td>nd</td>
</tr>
<tr>
<td>KT 0:100</td>
<td>167.23±1.96d</td>
<td>131.74±2.78g</td>
<td>nd</td>
</tr>
</tbody>
</table>
3.2 Results and Discussion ... cont’d

Peak viscosity - measurement of how readily starch swelling during cooking and resist shearing when heated in water.

Final viscosity - Retrogradation of starch paste on cooling.

Foling number - phenolic contents.

Protein digestibility – measures digestibility of protein using *in vitro* pepsin assay technique.
Peak viscosity

- Significantly increased after fermentation in waxy HD lines - 100% and 50% substitutions
- Waxy trait (WHD) improved sorghum starch swelling after fermentation equivalent to teff
- Decrease in injera, may indicate greater starch damage/gelatinization during fermentation & baking

Figure 1 Peak viscosity (cP) of sorghum flour, dough, batter and injera compared to teff

*shows significant difference from the control (100% teff); values are least mean square and error bars are standard errors; ANOVA followed by Dunnett’s mean comparison
Final viscosity

Figure 2 Final viscosity (cP) of sorghum flour, dough, batter and *injera* compared to teff

*shows significant difference from the control (100% teff); values are least mean square and error bars are standard errors; ANOVA followed by Dunnett’s mean comparison

- Normal (NWLD) sorghum lines showed significantly in different way than teff
 - Starch gel network integrity after cooling
 - Important for *injera* texture
 - 50:50 WHD to teff best performance in a synergy
 - 50:50 WHD to teff best performance in a synergy
- Normal (NWLD) sorghum had lowest viscosity
 - Starch did not properly cooked to form a cohesive network
Folin number

- 24 hr fermented sorghum line showed higher *folin number* values than teff
- Slight decrease on fermentation & *injera*
- Increase was observed for 24 and 40 hr fermentation of teff

Figure 3 Folin number of the fermented sorghum lines and teff

ANOVA and Tukey’s HSD; Values are least square means and error bars are standard errors; those with different letters of the same style are significantly different (*p*<0.05).
Protein digestibility

Figure 4 Protein digestibility of flour and *injera* produced from sorghum and teff

*values are significantly lower than the control (100% teff), values are least square means and error bars are standard errors.
4. Conclusion

The sorghum lines with waxy and HPD traits have potential for commercial *injera* production with consumer acceptance and 3 days keeping quality.

Fermentation and baking highly reduced the tannin and phytate that enhance bioavailability of sorghum based *injera*.

Waxy and HPD traits contributed to starch pasting, faster fermentation and delay *injera* stalling.

Substitution of teff up to 50% sorghum is applicable for commercial *injera* production.

- High economic benefits
Acknowledgement

This study is made possible by the support of the American People provided to the Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet through the United States Agency for International Development (USAID). The contents are the sole responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government. Program activities are funded by the United States Agency for International Development (USAID) under Cooperative Agreement No. AID-OAA-A-13-00047.
Acknowledgement

Prof. Taylor and his team (University of Pretoria) for provision of 4 sorghum lines with waxy and HPD traits, when our trials were not harvested

Prof. Joseph and his team (TAMU, Texas) for starch pasting property and *in vitro* protein digestibility

Dr. Taye Tadesse and Mr. Habte Nida (MARC/EIAR), for waxy and HPD sorghum lines trial production in Ethiopia

Research team (Dr. Berhanu, Mr. Yared and Mr. Gethun), at Hawassa University
Thank you for your attention